OSCILLATION PROPERTIES OF CERTAIN TYPES OF FIRST ORDER NEUTRAL DELAY DIFFERENCE EQUATIONS

G.GOMATHI JAWAHAR

Abstract

In this paper some sufficient condition for the oscillation of first order neutral delay difference equation were obtained.

\section*{KEYWORDS :}

Neutral Delay Difference Equation, Oscillation, Nonoscillation, Eventually positive.

\section*{Introduction 1.1}

In this paper some sufficient condition for the oscillation of first order neutral delay difference equation of the form $$
\begin{equation*} \Delta\left(a_{n} x_{n}-p_{n} x_{n-k}\right)+q_{n} f\left(x_{n-l}\right)=0, n \in N\left(n_{0}\right) \tag{1.1.1} \end{equation*}
$$

and
$\Delta\left(x_{n}+p_{n} x_{n-k}\right)+q_{n} f\left(x_{n-l}\right)=0, n \in N\left(n_{0}\right)$
were obtained with the assumption of e the following conditions.
$\mathrm{H}_{1}:\left\{p_{n}\right\}$ is an positive sequence.
$\mathrm{H}_{2}: f$ is a continuous function such that $u f(u) \geq 0$.
H_{3} : If there exists a function w such that $\mathrm{w}(\mathrm{u})>0$, for $\mathrm{u}>0$ and $f(u v) \leq w(u)|f(v)|$.
H_{4} : If there exists a function ϕ such that $\phi(u)$ is increasing and $u \phi(u)>0$, for $u \neq 0$ $\&|\phi(u+v)| \leq|f(u) f(v)|$.

1.2 Existence of Oscillatory

Solutions

In this section, I obtain some sufficient condition for the oscillatory solutions of the equation (1.1.1) and (1.1.2)

Theorem 1. 2.1

$$
\text { Assume that } \frac{p_{n}}{a_{n-k}} \leq 1
$$

and x_{n} be an eventually positive solution of
the equation (1.1.1) and
$y_{n}=\left(a_{n} x_{n}-p_{n} x_{n-k}\right)$. Then eventually $\mathrm{y}_{\mathrm{n}}>0$.

Proof

Let us consider $\mathrm{x}_{\mathrm{n}}>0, \mathrm{x}_{\mathrm{n}-1}>0, \mathrm{x}_{\mathrm{n}-\mathrm{k}}>0$ for some $\mathrm{n}>\mathrm{n}_{1}$.

From the equation (1.1.1),
$\Delta y_{n}=-q_{n} f\left(x_{n-l}\right)<0$. Hence y_{n} is a decreasing function.

Suppose y_{n} is not eventually positive, then eventually $\mathrm{y}_{\mathrm{n}}<0$.

Hence there exists $\mathrm{n}_{2}>\mathrm{n}_{1}$ and $\mathrm{M}>0$, such that $y_{n}<-M$.

Let, $Z_{n}=a_{n} x_{n}>0$.

Then, $Z_{n}=y_{n}+p_{n} x_{n-k}$.
$z_{n}<-M+\frac{p_{n}}{a_{n-k}} Z_{n-k}$.

Hence $Z_{n} \rightarrow-\infty, \quad n \rightarrow \infty$
as $n \rightarrow \infty$. Which contradicts the fact that z_{n} is eventually positive. Hence the proof.

Theorem 1.2.2

Assume that $\mathrm{p}_{\mathrm{n}}, \mathrm{q}_{\mathrm{n}}>0$ and $\frac{p_{n}}{a_{n-k}} \leq 1$.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \inf q_{n}^{*}\left(1+\frac{p_{n-1} \lambda_{n-k}}{q_{n-k}}\right)>0, \\
& \text { If, }
\end{aligned}
$$

where $q_{n}^{*}=\frac{q_{n}}{a_{n-1}}$,then every solution of equation (1.1.1) is an oscillatory solution.

Proof

Let us assume the contradiction that equation (1.1.1) has an non oscillatory solution. Let us consider x_{n} is eventually positive.

Let us consider $\mathrm{x}_{\mathrm{n}}>0, \mathrm{x}_{\mathrm{n}-\mathrm{l}}>0, \mathrm{x}_{\mathrm{n}-\mathrm{k}}>0$ for some $\mathrm{n}>\mathrm{n}_{1}$.

By theorem 1.2.1, y_{n} is eventually positive.

Also we have

$$
\begin{align*}
& \Delta y_{n}=-q_{n} f\left(x_{n-l}\right) \\
& y_{n}=a_{n} x_{n}-p_{n} x_{n-k} \\
& \Delta y_{n} \leq-q_{n} x_{n-l} \tag{1.2.1}
\end{align*}
$$

$$
\lambda_{n} \geq q_{n}^{*}+\frac{p_{n-l} \lambda_{n-k} q_{n}^{*}}{q_{n-k}}
$$

Hence $\lim _{n \rightarrow \infty} \inf q_{n}^{*}\left(1+\frac{p_{n-1} \lambda_{n-k}}{q_{n-k}}\right) \leq \lambda_{n}$,
$\Delta y_{n} \leq-q_{n} \frac{y_{n-l}+p_{n-1} x_{n-k-l}}{a_{n-l}}$

$$
\Delta y_{n}=\frac{-q_{n} y_{n-l}}{a_{n-l}}-\frac{q_{n} p_{n-l} x_{n-k-l}}{a_{n-l}}
$$

From the equation (1.2.1),
$\Delta y_{n} \leq \frac{-q_{n} y_{n-l}}{a_{n-l}}+\frac{q_{n} p_{n-l} \Delta y_{n-k}}{a_{n-l} q_{n-k}}$

Hence y_{n} satisfies the inequality, equation (1.1.1) is an oscillatory solution.

Theorem 1.2.3

$$
a_{n}=1, \text { forn }=1,2,3 \ldots
$$

Suppose that
Then
$\Delta\left(x_{n}+p_{n} x_{n-k}\right)+q_{n} f\left(x_{n-l}\right)=0, n \in N\left(n_{0}\right)$ is oscillatory if there exists a function λ such that $0 \leq \lambda_{n} \leq 1$ for $n \geq n_{0}$ and the differenc inequality $\Delta z_{n}+Q_{n} \phi\left(z_{n-l+k}\right) \leq 0$,
has oscillatory solution where,

$$
Q_{n}=\min \left(\lambda_{n} q_{n}, \frac{\left(1-\lambda_{n-k}\right) q_{n-l}}{w p_{n-l}}\right)
$$

Suppose to the contrary that there is a non oscillatory solution X_{n}. Assume that, $x_{n}>0$,

For all $\mathrm{n}>\mathrm{n}_{0}$. Let
$y_{n}=x_{n}+p_{n} x_{n-k}$
$\Delta\left(y_{n}\right)=-q_{n} f\left(x_{n-l}\right)<0$.

Also $\mathrm{y}_{\mathrm{n}+1}<\mathrm{y}_{\mathrm{n}}, \quad \mathrm{y}_{\mathrm{n}}$ is decreasing function.,
Hence $y_{n+1}+q_{n} f\left(x_{n-1}\right)=y_{n}$
$y_{n}>q_{n} f\left(x_{n-1}\right), n \geq n_{0}$.
Taking summation from n_{0} to $\mathrm{m}, \mathrm{m}>\mathrm{n}_{0}$,

$$
\begin{array}{ll}
\sum_{n=n_{0}}^{m} y_{n}>\sum_{n=n_{0}}^{m} q_{n} f\left(x_{n-l}\right) & \Delta z_{n}=Q_{m+1} \phi\left(y_{m+1-l}\right)-\phi_{n_{0}+k} \phi\left(y_{n_{0}+k-l}\right) \\
\Delta z_{n}>-Q_{n} \phi\left(y_{n-l}\right)
\end{array}
$$

$$
\begin{aligned}
& \sum_{n=n_{0}}^{m} y_{n}>\sum_{n=n_{0}}^{m}\left(\left(\lambda_{n} q_{n} f\left(x_{n-l}\right)+\left(1-\lambda_{n}\right) q_{n} f\left(x_{n-l}\right)\right)\right. \\
& \sum_{n=n_{0}}^{m} y_{n}>\sum_{n=n_{0}}^{m} Q_{n} f\left(x_{n-l}\right)+\sum_{n=n_{0}+k}^{m}\left(1-\lambda_{n-k}\right) q_{n-k} f\left(x_{n-k-l}\right)
\end{aligned}
$$

$$
\sum_{n=n_{0}}^{m} y_{n}>\sum_{n=n_{0}}^{m} Q_{n} f\left(x_{n-l}\right)+\sum_{n=n_{0}+k}^{m} Q_{n} f\left(p_{n-l} x_{n-k-l}\right)
$$

$$
\sum_{n=n_{0}}^{m} y_{n}>\sum_{n=n_{0}}^{m} Q_{n}\left\{f\left(x_{n-l}\right)+f\left(p_{n-l} x_{n-k-l}\right)\right\}
$$

$$
\sum_{n=n_{0}}^{m} y_{n}>\sum_{n=n_{0}+k}^{m} Q_{n}\left\{\phi\left(x_{n-l}+p_{n-l} x_{n-k-l}\right)\right\}
$$

$$
\sum_{n=n_{0}}^{m} y_{n}>\sum_{n=n_{0}+k}^{m} Q_{n}\left\{y_{n-l}\right\}
$$

$$
\text { Let } Z_{n}=\sum_{n_{0}+k}^{m} Q_{n} \phi\left\{y_{n-l}\right\}>0 .
$$

$$
\text { Then } \Delta z_{n}=z_{n+1}-z_{n}
$$

$$
\Delta z_{n}=\sum_{n=n_{0}+k}^{m}\left(Q_{n+1} \phi\left\{y_{n+1-l}\right\}-Q_{n} \phi\left(y_{n-l}\right)\right)
$$

$$
\Delta z_{n}>-Q_{n} \phi\left(z_{n-l+k}\right)
$$

$$
\Delta z_{n}+Q_{n} \phi\left(z_{n-l+k}\right)>0 . \text { This condition holds }
$$ when z_{n} is eventually positive solution. This is a contradiction to the equation (1.2.2).

Hence the proof compltes. Similarly we prove that, when x_{n} is eventually negative.

2.1 Examples

Example 2.1.1
Consider the first order neutral delay difference equation

$$
\Delta\left(n x_{n}-x_{n-1}\right)+(2 n+3) x_{n-2}{ }^{3}=0, n>0
$$

Here
$a_{n}=n, k=1, l=2, p_{n}=-1, q_{n}=(2 n+3)$

All the conditions of the theorem 1.2.2 are satisfied.

Hence all its solutions are oscillatory. One such
solution is $(-1)^{\mathrm{n}}$.

Example 2.1.2

Consider the first order neutral delay difference equation

$$
\Delta\left(x_{n}-\frac{1}{n-1} x_{n-1}\right)+\frac{2 n+3}{(n-2)^{3}} x_{n-2}^{3}=0, n>2
$$

Here

$$
a_{n}=1, k=1, l=2, p_{n}=-\frac{1}{n-1}, q_{n}=\frac{2 n+3}{(n-2)^{3}}
$$

Hence all the conditions of the theorem 1.2.2 are
satisfied.

Hence all its solutions are oscillatory. One such

References

[1] R.P.Agarwal , 'Difference Equations and Inequalities’, Marcel Dekker,New York,(1992).
[2] S.S.Cheng and W. Patula, 'An Existence theorem for a Nonlinear Difference Equations', Nonlinear Anal.20, 193-203 (1992).
[3] D.A.Georgiou,E.A.Grove and G.Ladas, ‘ Oscillations of Neutral Difference Equations' ,Appl.Anal.33,243-253(1989).
[4] S. R. Grace, Giza, H. A. El-Morshedy , 'On the Oscillation of Certain Difference Equations', Mathematica Bohemica, 125 ,No. 4, 421-430(2000).
[5]G.Ladas, ' Recent Developments in the Oscillation of Difference Equations', J.Math.Anal.Appl.153,276-287(1990).
[6]G.Ladas, ch.G.Philos and Y.G.sficas, 'Necessary and Sufficient Conditions for the Oscillations of Difference Equations', Liberta Math. 9 ,121-125(1989).
[9] Ozkan A Ocalan and A Omer Akin, ' Oscillation Properties for Advanced Difference Equations', Novi Sad J. Math,Vol. 37, No. 1, 39-47(2007).
[10] E. Thandapani and P. Mohan Kumar , ' Oscillation and Non Oscillation of Nonlinear Neutral Delay Difference Equations', Tamkang Journal of Mathematics,Volume 38, Number 4, 323-333,(2007).
[11] Willie E. Taylor, Jr. and Minghua Sun, ‘ Oscillation Properties of Nonlinear Difference Equations', Portugaliae Mathematica,Vol. 52 Fasc. 1(1995).

